Coffee Detection, Spatial Assessment and Modeling

Nicholas C. Manoukis

USDA-ARS Daniel K. Inouye US Pacific Basin Agricultural Research Center

This Talk

- 1. Modeling coffee agro-ecosystems on Hawaii Island (especially CBB, coffee plants; plus detection)
- 2. Visualizing spatial data and model results
- 3. Field collection of data to validate the model

This Talk

- 1. Modeling coffee agro-ecosystems on Hawaii Island (especially CBB, coffee plants; plus detection)
- 2. Visualizing spatial data and model results
- 3. Field collection of data to validate the model

Two Modeling Tracks

- We are producing a validated spatial model of coffee agroecosystems on the island. We would like this to serve as a broad background we can ask general questions.
- 2) We are developing models of a more limited scope to serve as tools to address specific research and management questions.

Detecting Coffee Patches in Hawaii

Accuracy Assessment

Overall Accuracy %	68.15
Карра	0.6081

Class	Ground Truth Percent %								
	Coffee	Mcnut	Forest	Grass	Mpod	No Veg	Urban	Roads	Total
Coffee	71.82	18.46	7.70	1.06	5.80	0.00	0.00	0.27	23.03
Macnut	10.11	36.39	5.88	4.41	9.01	0.00	0.00	0.00	13.72
Forest	3.38	24.01	75.82	12.39	5.80	0.00	0.27	0.27	29.14
Grass	7.29	1.35	2.03	80.60	0.15	0.67	0.00	0.00	10.83
Monkeypod	5.29	19.00	6.95	1.38	79.24	0.00	0.00	0.00	10.80
No Veg	0.32	0.48	1.32	0.16	0.00	98.67	2.69	2.41	7.92
Urban	1.79	0.31	0.18	0.00	0.00	0.07	93.55	1.07	2.45
Roads	0.00	0.00	0.12	0.00	0.00	0.59	3.49	95.99	2.10
Total	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00

NORTH KONA

SOUTH KONA

Model Components

- Coffee plants
- CBB populations
- Pathogens/parasites
 Critical inputs:
 - Temperature
 - Solar irradiation
 - Rainfall
 - Management

J. Gaertner

Acuna et al, PNAS (2011)

Plant Model Components Light interception & photosynthesis per branch and per plant Effects of temperature Water and nitrogen acquisition Photosynthate allocation Fruiting phenology and dynamics

Insect Model Components Development Reproduction and mortality Migration and emigration Disease/Management

Model Construction (Hermes)

Quick Results

This Talk

- 1. Modeling coffee agro-ecosystems on Hawaii Island (especially CBB, coffee plants; plus detection)
- 2. Visualizing spatial data and model results
- 3. Field collection of data to validate the model

Model Interaction (Viewer)

Spatial data viewer

Spatial data viewer

Model Interaction (Model output)

This Talk

- 1. Modeling coffee agro-ecosystems on Hawaii Island (especially CBB, coffee plants; plus detection)
- 2. Visualizing spatial data and model results
- 3. Field collection of data to validate the model

Area-Wide Field Data

- Data being collected for 7 managed farms, 2 unmanaged and 2 feral sites
- Visit each site every two weeks
- Check:
 - CBB infestation level (in field, plus dissection)
 - Trap catch
 - Plant phenology
 - Weather
 - Management

Progress on Spatial Data – Field

Progress on Spatial Data – Field

Progress on Spatial Data – Field

- Unmanaged/feral sites are matched with managed farms (control)
- Sentinel plants placed in each unmanaged/feral site (2 per site)

Acknowledgements

CBB Modeling Group

Ray Carruthers, UH-CTAHR Chris Potter. NASA Dave Bubenheim, NASA Vanessa Genovese, CSUSB Timothy Larkin, Cornell University

Andrea Kawabata, Kelvin Sewake, CTAHR, UH Julie Gaertner, CTAHR, UH/USDA-ARS Lisa Keith, Tracie Matsumoto and Rob Hollingsworth USDA-ARS Forest Bremer, USDA-ARS