CBB Efforts at PBARC

Lisa Keith

Research Plant Pathologist US Daniel K. Inouye Pacific Basin Agricultural Research Center Lisa.Keith@ars.usda.gov KCFA Expo 2015

Topics

- Area-wide CBB Program
- Summary of work at DKI-PBARC
- 2014 data (currently unpublished)
- Conclusions

Area-wide CBB Program

- An area-wide mitigation and management program for CBB control was established by PBARC in August 2013 with funds received from ARS (\$1M) in collaboration with the University of Hawaii at Manoa
- 2014, Federal Grant, \$703,358
- Team: 13 members
 - (6 CTAHR, 6 DKI-PBARC, 1 ARS Ithaca)

Area-wide CBB Program

Original Objectives:

- Optimize the dose and use of commercial *Beauveria*
- Map the area and extent of the infestation
- Understand insect phenology
- Synchronize coffee blooms for harvest and sanitation
- Area-wide education and extension outreach
- Economic analysis of CBB effects and cost/benefit of control measures
- Analyze the CBB genome to better understand CBB biology

Area-wide CBB Program

Additional Objectives:

- The use of more effective *Beauveria* strains
- Reduce field populations of CBB using
 - Semiochemicals
 - Entomopathogenic nematodes (EPNs)
 - Predators
 - Pruning styles
- Improved quarantine treatments
- Implement preventative and/or management measures to additional islands

PBARC Scientists Involved With CBB

Lisa Keith Tracie Matsumoto Nicholas Manoukis Eric Jang Peter Follett Roxana Myers Steve Wraight (Ithaca, NY)

- * Integrated Management for Control of Coffee Berry Borer (CBB)
 - * PBARC working cooperatively with CTHAR, HDOA and others
 - * Participation as key members of the CBB Task Force, SHAC and many farming groups

Map the Area and Extent of the Infestation of CBB

- Developed a database for documenting and data sharing amongst CBB researchers
- Field work has included collection of preliminary ground-based spectral signature data from coffee plants
- Remote detection of coffee
- Working on a decision support tool for growers
 - Dr. Nicholas Manoukis

Synchronize Coffee Flowering as a Harvest Management Tool

- Goal: to reduce crop losses for sanitation and reduce CBB populations in the field
- Plant growth regulator treatments have been applied; harvest data is being collected, and CBB infestation levels are being examined
- Presence of CBB in fallen cherries is being monitored

• Dr. Tracie Matsumoto

Develop and Deploy B. bassiana

- Improved efficacy data (rate of infection; correlation between efficacy and environment)
- Isolate and characterize naturally occurring isolates of *Beauveria* spp.
- Assess the activities of GHA vs. local strains

• Dr. Steve Wraight (ARS Ithaca)

Use of Entomopathogenic Nematodes (EPNs) as an Alternative to Sanitation

- A CBB colony was established on artificial diet in the laboratory
- Heterorhabditis strains were mass reared on mealworm beetle larvae

• Dr. Roxana Myers

Chemical Ecology Perspective of CBB Control Strategies

- Utilize semiochemicals to reduce field populations of CBB
- Work continues on the HS-GC-MS analysis of bioactive volatiles from coffee plant tissues and CBB at different development stages
- Use of repellents; "Push-Kill"

• Drs. Eric Jang & Yang Yu

Utilize Predators to Reduce Field Populations of CBB

- Square-necked grain beetle, *Cathartus* quadricollis
 - Dr. Peter Follett with Ms. Andrea Kawabata

An Introduction to Beetle Predators of Coffee Berry Borer (CBB) in Hawaii Workshop - Kona

Saturday, February 7, 2015 (2 sessions are available) Morning: 9:30 AM – 12:00 PM Afternoon: 2:00 PM – 4:30 PM Sheraton Keauhou Resort & Spa – Bayview Rooms (78-128 Ehukai Street; Kailua Kona, HI 96740)

Seating is limited. RSVP to Gina at <u>ginab@hawaii.edu</u> or 322-4892 by Thursday, February 5, 2015.

Beauveria/CBB Research: Persistence & Efficacy Goals for 2014

- Determine how timing and frequency of commercial *Beauveria* applications effect persistence and efficacy
 - Elevation: 1869 ft, 1547 ft, 624 ft (shade)
- Strip Pick
- Compare 2014 to 2013
 - Dr. Lisa Keith

BioWorks

Coffee Data Collected

- Field plot maps/Strip pick
- Persistence: Beauveria GHA
- Efficacy (Destructive method)
 - % AB, % AB Dead, % CD, % Infestation
- Efficacy (Non-destructive method)
 - % Infestation, % Beauveria
- Environmental
 - Temp, % RH, Leaf moisture, Rainfall, UV
- Quality/Harvest

2014 Spray Schedule

Rate = 1 qt/100 gal

Spray late afternoon/ early evening

once/month spray (#1) twice/month spray (#2) strip pick + once/month spray (#3)

> 1st Beauveria spray <u>2013</u> Honaunau Low: 4/8 Honaunau High: 5/6 <u>2014</u> Honaunau Low: 5/19 Honaunau High: 3/10

Sampling occurs before and after Beauveria sprays

Beauveria	Honaunau Low		Honaunau High			S	
spray dates	#1	#2	#3	#1	#2	#3	#1
3/10/14					1	1	
3/17/14				1	~	4	3/20
3/24/14				4	1	4	
4/7/14					\checkmark		
4/21/14				\checkmark	\checkmark	\checkmark	4/24
5/5/14					✓		
5/19/14	5/12	5/12	5/13	✓	✓	\checkmark	
6/2/14					\checkmark		6/1
6/16/14				\checkmark	\checkmark	\checkmark	
6/30/14					\checkmark		
7/14/14				✓	✓	\checkmark	7/4
7/28/14	7/29	7/29	7/29		\checkmark		
8/11/14				\checkmark	\checkmark	\checkmark	8/4
8/25/14					\checkmark		
9/8/14				✓	\checkmark	\checkmark	9/16
9/22/14	Х	Х	Х		\checkmark		
10/6/14				\checkmark	\checkmark	\checkmark	10/9
10/20/14					\checkmark		
11/3/14				\checkmark	\checkmark	\checkmark	
11/17/14					\checkmark		
12/1/14				\checkmark	\checkmark	\checkmark	
12/15/14					\checkmark		
12/22/15				\checkmark	\checkmark	\checkmark	
12/29/15					\checkmark		
1/5/15				✓	\checkmark	\checkmark	

Field Samples per Tree

Laboratory Results - Persistence

Weigh Wash Dilute Plate Count *Beauveria*

Laboratory Results – Efficacy, Destructive Method

Dissect berries Count beetles

AB alive/dead CD Beauveria

Data: Stripped

Honaunau Low Stripped 2/20/14		<u>14,619 sq ft; 13 people, 2 hours</u>								
weight (g)										
	Hole	No-Hole	Unsorted	Total	% Infested					
Raisin	-	-	1424.4	1424.4						
Red	736.9	61.4	-	798.3	92.3					
Green	1424.4	3036.2	-	4460.6	31.9					
6683.3g										
		14.7lb								
Honaunau HighStripped 3/7/148,404 sq ft; 8 people, 6 hours										
weight (g)										
	Hole	No-Hole	Unsorted	Total	% Infested					
Raisin	-	-	70.8	70.8						
Red	3008.7	1275.6	-	4284.3	70.2					
Green	2907.6	4950.7	-	7858.3	37.0					
				12213.4	0					
				26.9	u					

Honaunau Low B. bassiana GHA field persistence on coffee berries, 2014

2 or 3 sprays

strip pick (HL3)

Persistence, 2013

Honaunau High B. bassiana GHA field persistence on coffee berries, 2014

once/month spray (HH1) twice/month spray (HH2) strip pick + once/month spray (HH3)

14 or 25 sprays

Persistence, 2013

once/month spray (HH1) twice/month spray (HH2)

11 or 19 sprays

Plot S B. bassiana GHA field persistence on coffee berries, 2014

% AB = Alive + Dead + Absent (hole only)

strip pick (HL3)

% CD strip pick (HL3)

% infested = % AB + % CD

strip pick (HL3)

once/month spray (HH1) twice/month spray (HH2) strip pick + once/month spray (HH3)

% AB = Alive + Dead + Absent (hole only)

once/month spray (HH1) twice/month spray (HH2) strip pick + once/month spray (HH3)

% AB = Alive + Dead + Absent (hole only)

once/month spray (HH1) twice/month spray (HH2) strip pick + once/month spray (HH3)

% CD

once/month spray (HH1) twice/month spray (HH2) strip pick + once/month spray (HH3)

% CD

USDA

once/month spray (HH1) twice/month spray (HH2) strip pick + once/month spray (HH3)

% infested = % AB + % CD

once/month spray (HH1) twice/month spray (HH2) strip pick + once/month spray (HH3)

% infested = % AB + % CD

Efficacy: Destructive method, Plot S, 2014

Efficacy: Destructive method, Plot S, 2014

% CD

Efficacy: Destructive method, Plot S, 2014

Efficacy: Non-destructive method, Honaunau Low, 2014

% infested = a hole

strip pick (HL3)

% infested = a hole

strip pick (HL3)

Data: Harvest, 2014

Conclusions/Observations

- Difficult to give a precise recipe for success
- Only *Beauveria*: Not the silver bullet
- Only stripping: Not the silver bullet
- Timing versus number of applications
- Location specific for persistence and efficacy
- Environmental Data:
 - Locations are unique
 - Seasons can vary
- All data necessary for CBB Model

(Thanks to Nicholle, Lionel, Jim, Glenn and John for excellent technical help)

What Does The Data Tell Us?

- Knock back the existing CBB population early (strip; *Beauveria*)
- Spray in the late afternoon
- Beauveria doesn't persist as much during the harvest months
- Beauveria sprays: monitor visually; spray when necessary
- "% infested" doesn't necessarily mean you have a high % of damaged beans

Thank You Field Cooperators!

