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The coffee berry borer (CBB), Hypothenemus hampei, is one of the most destructive pests worldwide. In Hawaii,
coffee farmers have adjusted their farm management practices to deal with CBB since its introduction in 2010.
This study addresses decisions coffee farmers make to combat damage from the coffee berry borer in Hawaii. The
decision to spray or not spray a biological insecticide, Beauveria bassiana, is modeled during a typical coffee
growing season in Kona, Hawaii. If the expected damage to the crop from not spraying is greater than the cost to
spray, then it is beneficial to spray in order to mitigate that damage. To estimate economic damage, a Markov-
chain tracks changes in farm-level infestation levels from month-to-month based on whether the farm decides
to spray or not. The Markov-chain is incorporated into a dynamic programming model to provide a decision path
for spray decisions over the season that optimizes the final net-benefit for a typical farm. The developed economic
model is then used as the performance standard for alternate real-world management strategies. Integrated pest
management performs well but not much better than spraying on a calendar schedule, and all do better than never
spraying. An IPM-calendar hybrid could improve on both alternatives.

1. Introduction discovery of CBB, farms are expected to shut down as costs of control
increase, and production value decreases.

The coffee berry borer (CBB), Hypothenemus hampei (Ferrari 1867, Integrated Pest Management (IPM) strategies provide farmers with

Coleoptera: Curculionidae), is one of the most destructive pests to coffee
worldwide, second only to coffee leaf rust, Hemileia vastatrix (Berk &
Broome 1869, Pucciniales). In 2010, the discovery of CBB in Kona,
Hawaii [1], resulted in farmers reporting up to 80-90% infestation levels
of their coffee crop. More recently, bearing acreage is down 23% from the
2012-2013 season to 2017-2018 and processors rejected over 800,000
pounds of berries (ripe fruit containing the coffee bean [2]; “ripe berries”
and “cherry” are used interchangeably throughout) in the 2017-2018
season. The value of utilized production is also down $19 million from
$63 million in 2014-2015 to $44 million in the 2017-2018 season.
Coffee farmers in Hawaii operate on small margins where costs and un-
certainty in production can force farmers out of business [3,4]. With the

ways to combat CBB, such as field sanitation, spraying strategies, and
best practices for harvesting coffee berries and disposing of the infested
coffee berries [5,6].1 Most IPM recommendations are discrete activities
that are limited in number or concentrated in a specific time period.
Spraying and related activities are the only practices that occur every
month throughout the year. In this study, the focus is on spraying stra-
tegies assuming that farmers follow the other recommended practices.
CBB is difficult to combat because once they enter the coffee berries,
they are impervious to available insecticides and free to start the next
generation. One of the main IPM recommendations is to monitor and
sample the crop, then spray a biological insecticide, Beauveria bassiana,
before CBB enter the berry. The spray kills the pest within 3-10 days and

Abbreviations: CBB, Coffee Berry Borer; DP, Dynamic Programming; IPM, Integrated Pest Management; USDA, United States Department of Agriculture.
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does not affect the taste or production of the coffee bean. However, the
effectiveness is not well known for different concentrations and spray
intervals, especially under varied environmental conditions. Further, the
sprays and associated labor are costly, and decisions made by individual
farm operators (farm-level) account for factors such as elevation, terrain,
and farm size characteristics that add to the uncertainty of controlling for
CBB.

To reduce the risk and uncertainty introduced by pest infestation,
farmers seek reliable information that allows them to make informed
decisions to mitigate the damage [9-13]. To improve farm-level infor-
mation and estimate the economic impact, one approach models the
behavior of the pest. Studies generally use a Markov-chain to track the
temporal change in pest infestation levels during a season [14-17]. Once
the pest behavior is estimated, the recursive nature of farm-level de-
cisions is modeled in a stochastic dynamic programming framework
[17-22]. The benefit of this approach is that these studies can incorpo-
rate various policy or farm management decisions to derive optimal de-
cisions. A previous study modeled and derived monthly optimal
farm-level decisions under a constant growth rate of CBB infestation
[23]. However, farmers make decisions based on their previous decisions
and expectations about the future. Further, CBB growth rates are not
constant during the season and will vary from month-to-month. To
improve upon this previous study, the variant nature of CBB infestation
on a farm and the economic impact of those farm-level decisions is
estimated.

In this study, a farmer's monthly decision to spray or not to spray an
insecticide, and the cumulative impact on their final net-benefit is
modeled. In Section 2, materials and methods outline an ideal model and
how the modeling strategy is approached. Using field-level data and a
Markov-chain, CBB infestation levels are modeled in each month that
vary according to prior spraying decisions. Next, the farmer's expected
final net-benefit is optimized using a forward-recursive dynamic pro-
gramming (DP) framework. In each month, a farmer's spray decision
depends on whether the cost to spray is less than the expected damage to
coffee berries for the remainder of the season as a result of not spraying,
where this damage is based on the CBB infestation levels from the Mar-
kov chains. Net-benefit is estimated as the difference between revenue
from undamaged coffee and costs associated with CBB management. An
optimal strategy is traced out using monthly spray/no spray decisions
that maximize net-benefit for the entire season. In Section 3, the main
results are discussed. Finally, the model in Section 4 is used to evaluate
three alternate CBB spraying strategies: following IPM spray recom-
mendations, spraying based on a calendar schedule, and to never spray.

2. Materials and methods

One of the challenging aspects of CBB is understanding the environ-
mental factors that allow them to reproduce and how those factors
impact coffee production. In Hawaii, coffee production occurs on the side
of a mountain, so it is essential to factor in elevation and associated
environmental effects as well as micro-climates due to differences in
topography. Hawaii's unique weather patterns also vary from year-to-
year and across farms — even within a farm — so determining the effects
of environmental factors on coffee production and CBB is difficult. There
is, however, a direct relationship between coffee berry production on the
farm and CBB infestation. As coffee trees produce mature berries, CBB
gain new sources of food, which allows their population to grow faster.
The lack of data on this relationship and the associated environmental
conditions hamper the farmer's ability to make optimal decisions. To
overcome these limitations, an ideal model is discussed with its chal-
lenges and is then simplified to an operational model.

2.1. Ideal model

A model that captures coffee berry production, Coffee;, is estimated in
each month, t, as a function of weather, w;, and farm-level practices, 2.
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Coffee, :f(wz: Zr)

Weather, w,, takes into account many of the various environmental
factors, such as rain, duration of daylight, temperature spans, and hu-
midity, which directly affects berry production. It is also essential to
account for farm-level practices, z, such as trimming/pruning/de-
suckering, and fertilizer choice and frequency of application because
these decisions also affect the quality and quantity of berry production.
Taking account of these factors provides the direct relationship needed to
model berry growth.

Another critical component is modeling CBB population dynamics,
which also carry similar relationships to berry growth. CBB prefer
warmer days and ample moisture, so accounting for these in a similar
setup provides a realistic idea about how CBB grow during the season.

CBB population on a farm is modeled as,

CBB, = g(w,, Coffee,, z,)

where CBB in month t is modeled as a function of weather, w;, which
accounts for the same dynamics as berry production, Coffee;. CBB depend
on berries that are available as food, so increases in berries imply po-
tential increases in CBB. Farm-level practices, 2, such as spraying and
stripping berry from trees are also considered.

Next, there is a direct relationship to berry production and the CBB
population, so infestation levels are modeled as a function of berry pro-
duction and the CBB population,

InfestedAmount, = h(Coffee,, CBB;)

The infestation amount, InfestedAmount,, is tied directly to the amount
of coffee berry and CBB on the farm, so how much CBB infest berries on
the farm is tracked. To calculate infestation levels, divide the total
infested berry by the amount of berry on the farm, Infestation, =
InfestedAmount, / Coffee;. An important point to note here is that the
infestation level in each month is related to the amount of available berry
on the farm (i.e., a 1% infestation level on 1000 lbs of berry versus 1%
infestation level on 10,000 pounds of berry). This has implications early
in the season as infestation levels appear to decrease as more berries
mature, then at harvest as infestation levels increase as the amount of
available berries is reduced.

Next, the different positions CBB take in the coffee berry is accounted
for. The location of CBB in the coffee berry can take four positions: (1) A,
the beetle has landed on the coffee berry and is beginning to eat away at
the skin; (2) B, the beetle has eaten through the outer skin, but has not
reached the coffee bean; (3) C, the beetle has now begun eating away at
the coffee bean; and (4) D, the beetle has done significant damage to the
coffee bean and has already started, or is in the process, of laying eggs
[5]; see Fig. 1 for CBB positions. When CBB is in the C or D (CD) position,
they are impervious to approved insecticide and are non-marketable due
to the damages to the coffee bean. These positions also have a time
component and vary from month-to-month as CBB attack newly formed
berries. Additionally, each of these positions, Position;, is modeled as a

A B Cc D

Fig. 1. CBB can take four positions in the coffee berry: (1) A, the beetle has
landed on the coffee berry and is beginning to eat away at the skin; (2) B, the
beetle has eaten through the outer skin, but has not reached the coffee bean; (3)
C, the beetle has now begun eating away at the coffee bean; and (4) D, the beetle
has done significant damage to the coffee bean and has already started, or is in
the process, of laying eggs which will hatch and feed on the bean until it is
completely consumed. Source: Adapted by Burt [5], from Bustillo et al. [32].
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proportion of the total infestation levels on the farm. Summing across all
positions provides the total infestation on the farm, Infestation;.

4
Infestation, = Z Position;,
i=1

This simple model provides the percentage of the damaged crop from
CBB infestation in each position. CBB infestation describes the probability
of CBB being in A, B, C, D that is taken from a sample of the coffee berry. The
infestation level on the farm — analogous to the farmer taking a sample — can
be determined by selecting from Coffee; and CBB,. The farmer then takes
into account whether to spray or not spray based on the current infestation
levels on their farm and expectations about future infestation levels.

In a previous study, the decision to spray was based on the trade-off
between the expected loss in berry from not spraying versus the cost to
spray is modeled [23]. If the expected loss in berry from not spraying is
greater than the cost to spray, then it is beneficial to spray. This decision
framework is included in the model where the expected damage in the
next period is equal to the difference in the expected CD infestation next
period minus the current CD infestation times the expected production in
the period.

The optimal net-benefit function is defined as,

December December

Total NB= NB, = P,H,(1 - D,) &S+ C”H, @
’Zé‘“y r:;u:ary Revenue Cost ,

for the coffee growing season from January to December where net-
benefit is defined as revenue P,H;(1 — D), minus CBB control and har-
vest costs, ¢;S; + c,H;, where revenue equals price, P;, times the current
harvest, H;, times the percentage of coffee that is marketable (1 —D;)
where D; represent berries that are in the CD position and non-
marketable. CBB control and harvest costs are equal to the costs to
spray, cs, times decision to spray or not to spray, S;, plus labor costs to
harvest, ¢, times the current harvest, H;. The other costs of production
are assumed to be the same regardless of the decision to spray. The price
of berry, P;, is based on the infestation of CBB in the CD position (See
Table 1).

2.2. Challenges and solutions

An ideal model is outlined to improve decision making on a farm;
however, it is not possible to apply the ideal model due to insufficient
data - records are few, and no two coffee farms are the same including
different environmental conditions and management practices. By ne-
cessity, field-level data collected during May-December 2016 from farms
in Kona including university research plots, and experts who have been
studying the growth patterns of CBB in Hawaii is used in the present
study [24]. These data account for weather and farm-level practices. By
combining data and expert knowledge, a Markov-chain is estimated that
models the change in the growth rate of CBB from spraying and not
spraying. For simplicity, a dynamic programming model is then used to
optimize the net-benefit.

To simplify the functional form for Coffee;, berry production follows a
logistic growth function (see Fig. 2). The logistic growth function is used

Table 1
Harvest Pricing per 1bs of Coffee Cherry.

Infestation CD Price per pound.

0-5% $1.80
6-10% $1.70
11-15% $1.60
16-20% $1.45
21-30% $1.20
31-40% $0.60
41-58% $0.59-0.35
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Fig. 2. The logistical growth function to estimate coffee cherry population dy-
namics - changes in number and size of maturing berries — from January
to December.

in two ways: (1) to account for the amount of coffee berry CBB can attack
each month; and (2) the amount harvested in each month. At the
beginning of the season, there will be a minimal number of berries on the
farm since growers have followed best management practices of strip-
picking remaining coffee from the previous season. As the season con-
tinues, trees will flower, set fruit, and berries begin to mature rapidly
starting in the summer. CBB population dynamics will follow berry
production on the farm since berry is the food source. As more berries
mature and become available, CBB will leave its host berry and infest
newly formed berries. To model CBB;, CBB population dynamics are
assumed to be similar to the functional form for berry production (see
below for calibrating CBB population dynamics). This simplification
provides the total berry on the farm at any given month.

2.3. Infestation and Markov-chains

From the simplification of coffee production and CBB population, a
Markov-chain tracks infestation levels for a farm and estimates the pro-
portional change in each position during the season, thus allowing
Infestation; to be modeled directly. The percentage of infested berries in
each position at each time period is used as the basis for the farmer’s
decision making.

The movement between each position depends on many variables in
the field, such as the maturity of the berry, and environmental factors,
such as temperature. In A or B, CBB is exposed and vulnerable to in-
secticides. When a coffee berry is immature, CBB will remain in the AB
position for extended days to weeks. Once berries mature, CBB can move
from A or B to C or D position in a matter of hours, ensuring the demise of
the bean.

The Markov-chain estimates the probability of CBB moving into each
position and adjusts current infestation levels to reflect each month's
change. For example, a sample of 100 berries from the field is collected
and dissected. After dissecting the berries, 20 are in the AB position and
10 are in the CD position. Next month, another 100 dissected berries
show 15 are in the AB position and 15 are in the CD position. From the
first month to the next month 5 berries have moved from the AB position
into the CD position. Therefore, 5% of the berries will move from AB to
the CD position. This behavior can be modeled using a Markov-chain to
identify the changes for each position (state) in each month as well as the
percentages in each position. Further, Markov-chains allow changes be-
tween months to be variant (e.g., change from AB to CD will be different
from March to April than April to May).

Two separate Markov-chains are employed to portray the decision to
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spray or not to spray. When a farmer decides to spray, more CBB in the
AB position is killed so there is a lower probability of CBB eventually
moving into the CD position than if the farmer decides not to spray. Each
month will have a different level of change and the infestation levels are
adjusted based on the decision to spray or not to spray.

Formally, a time-inhomogeneous Markov-chain is defined as,

P(Xz :xr|Xz—l :xt—laXr—Z =Xi-2, ---1X0 :x()) = H:D(Xt :X,‘X,,] :xr—l)

where the probability, P, of a stochastic process, X, in month t is equal to
x; conditional on the previous month's stochastic process, X; 1, which is
equal to x;_; in the previous month until ¢ = 0. The intuition here is that
the current state is based on the previous month's infestation level until
the state returns to the beginning, ty. Therefore, at X, initial values are
estimated to start the stochastic process through t. In terms of infestation
levels, the stochastic processes, X;, are the different positions of CBB and
the path throughout a growing season's t = 0, ..., T. Initial values are
estimated as,

Vo=[vio Vvao Vio Vaol

where vector V; contains four elements (probability in each state that
sum to 100%):

(1) vi+ = NI: % not infested or those berries with no holes,

(2) vor = ABL: those berries with a hole and have live CBB in the AB
position,

(3) v3x = ABD: those berries with a hole and have dead or missing
CBB, and

(4) v4 = CD: berries with a hole and have CBB in the CD position.

Vo=[Nl, ABL, ABD, CDy]

Next, two sets of transition matrices are defined for spraying (SP,) and
not spraying (NSP;) where each matrix defines a probability for each
month, t, with event probabilities, az and by, in the probability space.
Formally, the transition matrices are defined as,

ayne A A1y Ay biy by by by
_ 0 a3 o4 _ 0 by by boy
5P = 0 0 1 0 NSP, = 0 0 1 0

0 0 0 1 0 0 0 1

For SP;, the movement from state i to state j in ay is the probability
that the current state, or infestation level, will transition to a different
state in ay.. For example, NI to ABL is defined as a1, to a2, from ABL to
ABD is asy; t0 as3;, and ABL to CD is as,, to ays,. Once a berry is damaged
in CD it cannot be undone, therefore, ass; and aq4; are defined as one in
the matrices. Zeros in the matrices prevent impossible movements, such
as CBB that are in AB position and dead moving to CD, or CBB in CD
position undoing the damage and moving back to AB. The no spraying
matrix elements determine the same position movements at SP,,
although, probabilities between movements may be higher due to not
spraying.

To track the current levels of infestation, vector V; is defined as,

V,=[NI, ABL, ABD, CD;]

where each position of CBB is defined as an element in each month t. The
choice to spray is a binary decision (zero or one), S;, equal to one if the
farmer decides to spray and zero if the farmer decides not to spray.
Therefore, to estimate the current infestation, given a choice decision,
the vector, V, is equal to,

Vi=Vi1-[S;-SP,]+ Vi1 [(1=S,) - NSP}]

To find berry in the CD position, damage, D, is the fourth element of
the vector V,,
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D,=CD,

To demonstrate how this Markov-chain works, a simple matrix
algebra example for month one is estimated as,

Vi = VoIS -SP\] + Vo -[(1 — 5,) - NSP)]
D, = CD,

where a vector, Vj, is equal to the initial infestation levels of each posi-
tion of CBB, times the choice to spray (S; = 1) or not spray (S; = 0)
using the transition matrices defined above. The current non-marketable
berry is equal to the element in the vector where D; = CD;. For month
two, the current infestation levels are equal to,

Vy =V, -[S2-SPy] + V; -[(1 — 8,) - NSP,]
D, = CD,

where a vector of infestation levels, V5, in month two uses the previous
infestation levels, Vi, to estimate current levels based on the decision to
spray or not spray utilizing the transition matrices in month two. The
vector V; can then be multiplied by harvest amount to get the quantities
of berry that are NI, ABL, ABD (all acceptable in the market) and CD
(damaged and not marketable, in the model).

2.4. Data and calibration

To calibrate the Markov matrices, it would be best to identify two
identical farms in the same location where one sprayed all year round
and the other did not. A comparison of the two farms would provide the
growth rate difference resulting from the primary decision to spray.
Unfortunately, and as previously noted, the data not available are ob-
servations on infestation levels from January to May and information for
a farm that never sprays. To overcome these limitations, expected initial
infestations levels are interpolated based on what field-level experts
suggest; that is, a higher initial level with no spraying. The infestation
percentages should be higher in the early part of the year because of
fewer berries on the tree then slowly decline with flowering and as
berries form and mature faster than CBB reproduce. We then utilized
field-level data from our research plots at the UH-CTAHR Kona Research
Station and data collected from 25 farms from May to December ([24,
25], Luis Artistizabal and Suzanne Shriner, personal communication).
Each farm provided results from sampling cherry on their farm in each
month and the various positions CBB were in. Combining the interpo-
lated data with observed field-level data provides a complete season of
infestation levels for a typical farm in Kona, Hawaii.

The procedure to calibrate the Markov-chains uses a maximum like-
lihood estimator and the likely probability of moving between each state
given the data.? The data used to calibrate the Markov-chains is a com-
bination of interpolated data and field-level estimates from Januar-
y-December. The calibration technique produces two sets of Markov-
chain transition matrices (decision to spray and to not spray) for the
twelve months in a growing season that includes the four positions, NI,
ABL, ABD, and CD (see Fig. 3). The transition matrices provide estimates
of infestation levels in each month based on whether a farmer decides to
spray or not and track those levels through time. These estimates are used
in the dynamic model to derive optimal farm-level decision making.

2.5. Dynamic programming

In this section, a dynamic programming economic model is developed
where the optimal strategy for a farmer is the set of monthly spray de-
cisions that maximize the net-benefit over the entire growing season.
Available berries are also accounted for through a logistic growth

2 The markovchain package was used to calibrate the Markov-chain matrices
[26].
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Fig. 3. Data used to calibrate Markov-chains for tracking CBB positions and
infestation levels for (a) Always Spray Infestation Levels and (b) Never Spray
Infestation Levels. Data was generated from field-level observations for 2016
coffee growing season and expert knowledge. Available cherry represents cherry
that is available on the farm and is ready for harvest.

function and then optimize the harvesting of berries during a month of
harvest. One advantage of using dynamic programming to address the
optimal strategy for a coffee farmer is that it fits nicely into decisions
farmers make every month. The real strength of the dynamic program-
ming model is that it can use the Markov-chains to determine a set of
monthly decision strategies based on the impact of previous decisions
while also accounting for expected subsequent infestation levels. As a
result, an entire season of decisions is modeled and optimal spraying
strategies are extracted.

To determine available ripe berries to harvest it is important to ac-
count for the transition from flowering, to immature and mature green
berries, ripe berries (cherry), and overripe berries (raisins); however, this
introduces complexity beyond the scope of this study due to limitations
in data. For simplification, cherry growth follows a logistic growth
function, G, that provides available cherry to harvest,

G(K,r,t)= Trer
where K is the total expected cherry on the farm at the end of the season,
r, is the growth rate of cherries, and t is the time component.

Available cherry is then harvested on the farm and assumed that there
is a proportion of total cherry, p(c), harvested in September, October,
November, and December (32%, 48%, 12%, 8%, and 0% for all other
months). H; is defined as percentages that are infested in each position
and price based on CD infestation level.®> On a farm, as the amount of
harvested cherry increases, available ripe coffee cherry declines. To ac-
count for this, the amount harvested, H, is subtracted from current
available cherry G;. The amount harvested in each month equals,

H, :p(c) K

To estimate the damage to harvested cherries from CBB, the results
from the Markov-chain above are used. The proportion of CBB in the CD
position is defined as D, = CD,. To calculate the total amount of har-
vested cherry in the CD position, the current CD infestation level is

3 At the mill, a sample of harvested cherry is collected, dissected, and CBB
position infestation levels are calculated to price the harvest. This behavior is
modeled in the DP set up to provide a realistic scenario for coffee farms.
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multiplied by the current amount harvested, H,.

The objective function optimizes net-benefit which is defined as the
revenue generated from cherry crop minus any costs (see equation (1)).
The revenue includes reduction due to economic damages from CBB and
costs include spraying and harvesting. The economic damage from CBB
in the CD position, D; = CD;, is obtained from the vector that tracks
infestation levels, V;. This result is utilized to account for damages to
revenue. Spraying costs are included if the decision to spray is made.
Harvesting costs include a labor rate applied to the amount harvested.

A dynamic programming model is derived to utilize all components
discussed above. Formally, a value function, f(), in month one is equal to
the net-benefit in period one, NB;, given harvest, H;, and current levels
of infestation, V7,

fi =NB(H, V1)

moving forward to month two carries with it the optimal results from
previous month one, ff , which includes total harvested, H;, and infes-
tation levels based on the decision to spray or not to spray, V;. Month two
is defined as,

5 :n?V%X{NBz§/3(NBz(H27 Va) +ff> }

where the net-benefit is maximized for month two, NB,, with a discount
factor, B, plus the optimal net-benefit from month one, f;. The dynamic
nature of the model includes the previous optimal value function and
optimization in the current month; thus, the Bellman equation can be
written as,

f= rr[)\,%x{NB,; B (NB, (H,, ;) +f;‘;,) }

where the optimal function in month ¢ is defined as f; , which maximizes
the current month, t, plus previous optimal value function, f," ; is given a
discount factor f.

An important feature of this model is that the variant nature of
infestation levels is captured between months and base the decision to
spray on whether the damage to berries from not spraying is higher than
the cost to spray. By optimizing the net-benefit given the level of infes-
tation, V;, and expected changes in CD; 1, the results are compared in the
next month to determine this decision. Finally, the optimal decision path
is derived for a coffee growing season.

3. Results

The provided economic model utilizes parameters in Table 2 which
describe a typical farm in Kona with two acres of coffee farmland and a
projected yield of 7500 pounds of berries per acre. Farm labor per hour
equals $15 and harvest labor is $0.50 per pound of berries. If the farm
decides to spray, a single spray occurs per month with a total cost of
$214.* The farm is assumed to have followed best practices so had low
initial infestation levels at the beginning of the season as follows: 5.5%
AB live, 2.5% AB dead or missing, 3% CD, and 89% NI.

The results of the economic model are presented in Table 3 and Fig. 4.
The optimal spray schedule is to not spray during January—May, spray
from June-November, and not spray in December. In the resulting CBB
levels in each month (Table 4), the initial decreases in the various
infestation percentages during the first half of the year reflect the growth
in the number of mature berries relative to CBB as described previously.
Once the coffee berries are sufficiently mature, CD levels increase until
reaching 9.23% in December. Again, this level is based on the available

4 Total costs include insecticide costs ($140) plus labor costs ($30) plus water
($20) plus surfactant for Beauveria bassiana ($24) equals $214.
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Table 2

Model parameters for a typical farm in Kona, Hawaii.
Parameter Unit Estimate
Acres Acres 2
Projected Cherry Lbs. per acre 7500
Farm Labor Dollars per hour $15
Spray Labor Hours per acre 1
Harvest Labor Dollars per 1bs. $0.50
Pesticide Quart per acre 1
Pesticide Costs Dollars per quart $70.35
Water Gallons per acre 100
Water Cost Dollars per 1k gallons $1.00
Surfactant Ounces per acre 45
Surfactant Costs Dollars per quare $8

cherry on the farm and does not represent the total CD infestation over
the season, which is 3.7%.

The damage to the crop as a result of the spray schedule totals 560
pounds of berries (Table 3). Due to increases in CD infestation levels,
price decreases from $1.80 to $1.70 per pound of berries from October to
November. The projected total loss in revenue from coffee cherry damage
is $984.20 and the total net-benefit is $17916.

These results suggest that if best practices are followed to ensure a
low initial infestation level then spraying in the early part of the season is
not justified given the combination of few available berries and low pest
pressure. When mature berries start to increase (around May or June)
then it is beneficial to spray. Spraying is not necessary for December
when there is not enough crop remaining and a short period of time until
harvest.

4. Discussion

Research on coffee production and CBB management in Hawaii is
challenged by the heterogeneity of farming operations that result from
the diverse environmental conditions, compounded by different man-
agement practices including shade or open field production, coffee va-
rieties used and planting densities, degree of mechanization, and usage of
different cultivation and pest control techniques. An overview of previ-
ous research [27] describes studies that have typically involved obser-
vations from no more than 10-15 farms.

The provided economic model uses an alternate approach that ex-
pands on previous modeling work [23]. This approach focuses on a hy-
pothetical operation with characteristics of a typical coffee farm, and
predicts the results if that farm had engaged in various spray manage-
ment programs. The farm makes spray decisions that maximizes a
net-benefit function given CBB infestation levels in previous months and
based on expected damage from not spraying versus spraying. In a given
period, if the expected damage for the remainder of the season from not
spraying is higher than the cost to spray, then it is beneficial to spray.
Since the same farm is involved with different programs, all other envi-
ronmental and management factors are unchanged.
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Fig. 4. CBB infestation levels from the economic model results from January
through December for (a) AB Live, (b) AB Dead, (c) CD, and (d) Total Infesta-
tion. The overall infestation levels are magnified by the availability of mature
berries between seasons, then reflect the impact of treatment. AB Live decreases
and low levels of infestation are reflected in low AB Dead levels. CD reflects the
initial high percentage, decreases as damaged beans are harvested, then builds
from mid year with cumulative damage to remaining beans.

Table 4
Field-level infestation results from economic model.

Month  Spray AB Live (%) AB Dead (%) CD (%) Infested (%)
Decision

Jan No Spray 5.5 2.5 3 11
Feb No Spray 5.34 0.16 5.27 11
Mar No Spray 5.34 0.16 5.27 11
Apr No Spray 4.87 0.31 3.96 9
May No Spray 4.09 0.16 2.38 7
Jun Spray 3.61 0.16 2.38 6
Jul Spray 3.1 0.59 1.27 5
Aug Spray 3.1 0.3 1.57 5
Sep Spray 2.07 0.52 2.38 5
Oct Spray 1.55 0.52 2.9 5
Nov Spray 1.03 1.03 7.12 9
Dec No Spray 1.03 1.03 9.23 11

With perfect information, the ideal economic model defines the
optimal spray strategy that will result in the largest possible net benefit.
However, this theoretical strategy is not practiced in the field because
farmers do not have sufficient information about the future. Three
simplified strategies are identified that farmers could use: choosing from
the spray decisions outlined in the CBB integrated pest management
program (Fig. 5) or “IPM Choice”, spraying based on a calendar schedule
“Always Spray”, and “Never Spray.”

Each strategy relies on different assumptions and costs. The economic
model assumes perfect information about future infestation levels; thus

Table 3
Field-level economic model results for a typical farm.
Month Spray Harvested Harvested Harvested Cherry Net-benefit Net-benefit
Decision Cherry (Ibs.) Damage (lbs.) Cost Price (Cum. Sum)
Jan No Spray 0 0 $0 $1.80 $0 $0
Feb No Spray 0 0 $0 $1.80 $0 $0
Mar No Spray 0 0 $0 $1.80 $0 $0
Apr No Spray 0 0 $0 $1.80 $0 $0
May No Spray 0 0 $0 $1.80 $0 $0
Jun Spray 0 0 $0 $1.80 $-214 $-214
Jul Spray 0 0 $0 $1.80 $-214 $-428
Aug Spray 0 0 $0 $1.80 $-214 $-642
Sep Spray 4800 114 $2400 $1.80 $6026 $5384
Oct Spray 7200 208 $3600 $1.80 $9146 $14,530
Nov Spray 1800 128 $900 $1.70 $1946 $16,476
Dec No Spray 1200 110 $600 $1.70 $1440 $17,916
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=1-1.99-Consider spraying, especially early in the season
=2-4.99 - Especially early in the season, this is a critical level to start spraying to avoid economic loss.
=5-9.99 - You are starting to lose money due to CBB damage. Losses will be greater if you don’t spray.
=10-19.99 - You are losing money due to CBB damage, but you may still want to spray.

=>20 - Processors may reject your harvest. The value of your harvest may not cover picking cost, so consider
focusing on your next crop (i.e. strip pick, stump prune)

Fig. 5. IPM recommendations based on dissected AB infestation and total
infestation levels (Kawabata et al., 2020).

monitoring/sampling are not needed. The optimal spraying strategy from
the economic model is the best a farmer can do. The IPM Choice strategy
requires monitoring/sampling in each month, so the associated costs of
2-labor hours per acre ($30) are included. When a farm decides to spray
regardless of information or sampling/monitoring results, they incur
only costs to spray. This strategy of spraying on a schedule can be
considered a mechanism to cope with inadequate information. A farm
that decides to spray is compared against a farm that decides never to
spray. Each strategy is then examined to evaluate their performance, with
results in Table 5 and Figs. 6 and 7.

Table 5 lists the monthly spray decisions for different strategies. Al-
ways Spray and IPM Choice are the same until the last two months, while
for the economic model, the decisions are to spray for six months and not
spray for six months. The resulting infestation levels are presented in
Fig. 7. All strategies followed the same IPM recommendations, so start
the year at the same levels. There is little difference in AB Live
throughout the year. For AB Dead, with Always Spray and IPM Choice
there are higher levels earlier in the year due to the spraying. CD levels
are paramount, as they reflect the actual damage to the crop. For CD and
overall infestation, all strategies have similar patterns until midseason,
then the levels for No Spray infestation start increasing as the berries
mature. The largest differences among the strategies other than No Spray
occur at the very end of the season.

Similar patterns are reflected in the results provided in Fig. 6. The
quantities of marketable cherry, or berries that are free from CD damage
at the mill, are highest for Always Spray (14512 pounds), followed by
nearly identical Economic Model (14438 pounds) and IPM Choice
(14437 pounds), and then Never Spray (10984 pounds). The corre-
sponding percentages of the total crop that are damaged are Always
Spray (3.3%), Economic Model and IPM Choice (both 3.7%), and Never
Spray (26.8%). The final CD infestation level when deciding to always

Table 5
Spray decisions for alternative spraying strategies.

Month Never Spray Always Spray IPM Choice Economic Model
Jan No Spray Spray No
Feb No Spray Spray No
Mar No Spray Spray No
Apr No Spray Spray No
May No Spray Spray No
Jun No Spray Spray Spray
Jul No Spray Spray Spray
Aug No Spray Spray Spray
Sep No Spray Spray Spray
Oct No Spray Spray Spray
Nov No Spray No Spray
Dec No Spray No No
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Fig. 6. Results for a typical farm from the Economic Model, IPM Choice, Always
Spray, and Never Spray for (a) Final CD (%), (b) Marketable Cherry (Ibs.), (¢c) CD
Damaged (Ibs) cherry, and (d) Final Net-benefit ($). Never spraying results in
very high damage levels as measured by Final CD % and Damage. The
Marketable Cherry is similar with treatments, but the cost and timing of those
treatments result in a wider range of Net-benefits. This can be substantial with
more acreage. The Economic Model is the profit maximizing best case.
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Fig. 7. CBB infestation levels for the Economic Model, IPM Choice, Always
Spray, and Never Spray. CBB Infestation levels are reported from January
through December. This expands on Fig. 4 to show all models. Never spraying
has the most pronounced differences, whereas the spray treatments are similar
(except for AB dead). The differences arise in the costs of the treatments.

spray is lowest (8.76%), followed by the economic model (9.23%), IPM
choice (14.97%), and Never Spray (40.99%). As expected by the growing
CBB population and the diminishing quantity of coffee remaining to be
harvested, the final CD levels are higher than the level for the entire crop.
These rates along with the final CD levels reflect the similarities among
strategies.

Finally, in terms of net-benefit, the economic model performs best
($17916) followed by Always Spray ($16632), IPM Choice ($16340),
and Never Spray ($5524). The difference in net-benefit between Eco-
nomic Model and Always Spraying is $1284, which suggests that if the
costs to collect the data for use in the economic model are higher than
$1284, then it would make sense to instead always spray each month.
The difference between Always Spraying and IPM Choice is $292 so even
a relatively small savings in the time needed to sample and monitor could
have an impact on grower use of IPM Choice [28-30]. For Never Spray,
the marketable cherry is more than two-thirds of the Economic Model,
yet the net-benefit is less than a third because of both the percentage of
infested harvest and the subsequent lower price for the cherry on the
sliding scale (Table 1).
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Compared to the Economic Model, Always Spray and IPM Choice
have higher or comparable quantities of marketable berries but they also
have higher costs so have lower net-benefits that are $1284 and $1576
less, respectively. Both alternatives have excess cost from spraying in the
early portion of the year where doing so has low impact; there are few
berries to infest and low initial levels of CBB, so spraying has little effect
on CBB levels. In addition, IPM Choice has the additional cost of moni-
toring and sampling in each month.

The only other published Hawaii research compared threshold based
(comparable to IPM Choice but with more restrictive conditions to
trigger an application) and calendar-based spray strategies [31]. That
study found that growers following threshold guidelines applied roughly
half as many applications (4-5 versus 7-11 sprays over the year), with
the fewer sprays concentrated early in the season as berries matured.
Yields between strategies were similar and there were no significant
differences in total defects so authors concluded that threshold spray
programs cost less than half as much, measured as a percentage of gross
yield. However, the costs of the monitoring and sampling in order to
make the spray decisions were not included. Doing so would narrow the
difference in cost between the two strategies, so overall these results
agree with the findings of the current study.

These results verify that spraying is necessary to maintain profit-
ability while managing CBB. Results suggest that IPM Choice and Always
Spray strategies are reasonable alternatives to the economic model, given
that farmers are unlikely to have perfect information. Further, a combi-
nation of the two might improve their performance, in particular, the
reduction or elimination of spraying when doing so has little benefit.
Since the IPM recommendations appear to trigger spraying too early, one
possibility is raising the spray threshold, i.e. spray at higher infestation
and AB alive levels. Then, since monitoring and sampling are less costly
than spraying, the farmer might use the new threshold only until
spraying is triggered, then spray on a set schedule until the majority of
the coffee has been harvested.

5. Conclusion

Understanding CBB infestation levels are critical to determining
economic damages and improving farm-level decision making for CBB
management. This study uses all available information and expert
knowledge to calibrate a Markov-chain that tracks monthly changes in
infestation levels based on the decision to spray or not spray in each
month of the coffee growing season. These estimates are incorporated
into a forward-recursive dynamic programming model that determines
the optimal decision path for monthly spraying decisions based on the
trade-off between the cost to spray and expected damage in the
remainder of the season from not spraying.

The results suggest it is best not to spray in January—May, then spray
from June-November before stopping at the end of the season. For a
typical farm in Kona, this decision path results in losses to CBB of 3.7% of
the season's crop, a final CD infestation level of 9.4%, and the total net-
benefit of $17916.

The economic model is then compared against alternative strategies
of IPM Choice, Always Spray, and Never Spray. Results verify the
importance of spraying and indicate that the three strategies that incor-
porate spraying have relatively similar results. The results suggest that
management strategies might be improved by combining current IPM
spraying recommendations with a calendar-based strategy.
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