Beauveria bassiana GHA Persistence in the Environment

Lisa Keith
March 2016
Topics

• Sampling Methods
• Persistence (Population Dynamics) & Efficacy (Destructive)
• Prediction Model
• Rate of Infestation (Non-destructive)
• Conclusions

Tracie, Steve & Sandy W, Nick, Ray, Robbie, Andrea, Suzanne
Persistence & Efficacy of *B. bassiana* GHA

- Potential for using the commercially available *B. bassiana* GHA strain as a control method for CBB in Hawaii
- Goal: optimize effectiveness and economics for farmers
- Determine how timing and frequency of commercial *Beauveria* applications affect persistence and efficacy
- Suppression sprays
- Strip pick
- Compare 2013 to 2015
- Effect on quality/harvest

Elevation:
- A. 1800 ft
- B. 1547 ft
- C. 624 ft (shade)
Coffee Data

• Field plot maps/Strip pick
• Persistence: *Beauveria* GHA
 – Rate: 32 oz + 8 oz surfactant in 30 gal of water/acre
• Efficacy (Destructive method)
 – % AB, % AB Dead, % CD, % Infestation
• Efficacy (Non-destructive method)
 – % Infestation, % Beauveria
• Environmental
 – Temp, % RH, Leaf moisture, Rainfall, UV
• Quality/Harvest
Field & Lab Samples per Tree

Persistence

1 subsample = 15 random berries
10 trees

high
middle
low

Weigh
Wash
Dilute
Plate

Count *Beauveria*

USDA
Field & Lab Samples per Tree

Efficacy: Destructive

1 subsample = 10 green berries
4 trees

Dissect berries
Count beetles
AB alive/dead; CD; Beauveria
Field Samples per Tree

Efficacy: Nondestructive

1 subsample = branch 4 trees
Data: Persistence & Efficacy
Data: Stripped, Honaunau Low, 2015

99,166 sq ft (2.2 acres); 12 people, 6 hours

<table>
<thead>
<tr>
<th></th>
<th>Hole</th>
<th>No-Hole</th>
<th>Unsorted</th>
<th>Total</th>
<th>% Infested</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL1</td>
<td>30710.9</td>
<td>30710.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raisin</td>
<td>208.9</td>
<td>9.7</td>
<td></td>
<td>218.6</td>
<td>95.6</td>
</tr>
<tr>
<td>Red</td>
<td>12.7</td>
<td>0</td>
<td>-</td>
<td>12.7</td>
<td>100.0</td>
</tr>
<tr>
<td>Green</td>
<td>521.3</td>
<td>1284.4</td>
<td>-</td>
<td>1805.7</td>
<td>28.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Hole</th>
<th>No-Hole</th>
<th>Unsorted</th>
<th>Total</th>
<th>% Infested</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL2</td>
<td>20708.5</td>
<td>20708.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raisin</td>
<td>943</td>
<td>99.19</td>
<td></td>
<td>1042.19</td>
<td>90.5</td>
</tr>
<tr>
<td>Red</td>
<td>15.6</td>
<td>0</td>
<td>-</td>
<td>15.6</td>
<td>100.0</td>
</tr>
<tr>
<td>Green</td>
<td>764.3</td>
<td>162.7</td>
<td>-</td>
<td>927</td>
<td>82.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Hole</th>
<th>No-Hole</th>
<th>Unsorted</th>
<th>Total</th>
<th>% Infested</th>
</tr>
</thead>
<tbody>
<tr>
<td>HL3</td>
<td>15697.9</td>
<td>15697.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Raisin</td>
<td>3054</td>
<td>5.3</td>
<td></td>
<td>3059.3</td>
<td>99.8</td>
</tr>
<tr>
<td>Red</td>
<td>230.3</td>
<td>28.6</td>
<td>-</td>
<td>258.9</td>
<td>89.0</td>
</tr>
<tr>
<td>Green</td>
<td>428.1</td>
<td>896.1</td>
<td>-</td>
<td>1324.2</td>
<td>32.3</td>
</tr>
</tbody>
</table>
Persistence: Honaunau Low, 2015

HL1, HL2: Monthly sprays
HL3: Spray as needed

All strip picked
Efficacy: Destructive method, Honaunau Low, 2015

% AB

HL1, HL2: Monthly sprays
HL3: Spray as needed

All strip picked
Efficacy: Destructive method, Honaunau Low, 2015

% CD

HL1, HL2: Monthly sprays
HL3: Spray as needed

All strip picked
Data: Stripped, 2014

Honaunau Low 3
Stripped 2/20/14

14,619 sq ft (0.3 acres); 13 people, 2 hours

<table>
<thead>
<tr>
<th></th>
<th>Hole</th>
<th>No-Hole</th>
<th>Unsorted</th>
<th>Total</th>
<th>% Infested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raisin</td>
<td>-</td>
<td>-</td>
<td>1424.4</td>
<td>1424.4</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>736.9</td>
<td>61.4</td>
<td>-</td>
<td>798.3</td>
<td>92.3</td>
</tr>
<tr>
<td>Green</td>
<td>1424.4</td>
<td>3036.2</td>
<td>-</td>
<td>4460.6</td>
<td>31.9</td>
</tr>
</tbody>
</table>

6683.3g
14.7lb

- HL1-HL3: 3 sprays total (no suppression sprays)
- HL3: strip picked
- Mid-year: 20-30% AB; 10-30% CD
- Start of harvest: 30-50% AB; 20-40% CD
- End of harvest: >50% AB; 60% CD
Data: Stripped, Honaunau High, 2015

22,080 sq ft (0.5 acres); 10 people, 6 hours

<table>
<thead>
<tr>
<th></th>
<th>HH1</th>
<th>Hole</th>
<th>No-Hole</th>
<th>Unsorted</th>
<th>Total</th>
<th>% Infested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raisin</td>
<td>17919.1</td>
<td>145.9</td>
<td>22.3</td>
<td>168.2</td>
<td>86.7</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>1565.4</td>
<td>608.5</td>
<td>-</td>
<td>2173.9</td>
<td>72.0</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>936.8</td>
<td>864.2</td>
<td>-</td>
<td>1801</td>
<td>52.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>HH2</th>
<th>Hole</th>
<th>No-Hole</th>
<th>Unsorted</th>
<th>Total</th>
<th>% Infested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raisin</td>
<td>14010.7</td>
<td>257.6</td>
<td>48.1</td>
<td>305.7</td>
<td>84.3</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>1815.9</td>
<td>708.4</td>
<td>-</td>
<td>2524.3</td>
<td>71.9</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>709</td>
<td>612.8</td>
<td>-</td>
<td>1321.8</td>
<td>53.6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>HH3</th>
<th>Hole</th>
<th>No-Hole</th>
<th>Unsorted</th>
<th>Total</th>
<th>% Infested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raisin</td>
<td>34356.2</td>
<td>69</td>
<td>163</td>
<td>232</td>
<td>29.7</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>1172.9</td>
<td>76.4</td>
<td>-</td>
<td>1249.3</td>
<td>93.9</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>804.2</td>
<td>1146.9</td>
<td>-</td>
<td>1951.1</td>
<td>41.2</td>
<td></td>
</tr>
</tbody>
</table>
HH1, HH2: Monthly sprays
HH3: Spray as needed
All strip picked
Efficacy: Destructive method, Honaunau High, 2015

% AB

HL1, HL2: Monthly sprays
HL3: Spray as needed

All strip picked
Efficacy: Destructive method, Honaunau High, 2015

% CD
HL1, HL2: Monthly sprays
HL3: Spray as needed

All strip picked
Data: Honaunau High, 2014

Honaunau High 3
Stripped 3/7/14

8,404 sq ft (0.2 acres); 8 people, 6 hours

<table>
<thead>
<tr>
<th>weight (g)</th>
<th>Hole</th>
<th>No-Hole</th>
<th>Unsorted</th>
<th>Total</th>
<th>% Infested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raisin</td>
<td>-</td>
<td>-</td>
<td>70.8</td>
<td>70.8</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>3008.7</td>
<td>1275.6</td>
<td>-</td>
<td>4284.3</td>
<td>70.2</td>
</tr>
<tr>
<td>Green</td>
<td>2907.6</td>
<td>4950.7</td>
<td>-</td>
<td>7858.3</td>
<td>37.0</td>
</tr>
</tbody>
</table>

12213.4g
26.9 lb

- Suppression sprays
- HL1: 1 spray/month; HL2: 2 sprays/month; HL3: strip picked + 1 spray/month
- Harvest: 5-20% AB; 5-10% CD
Data: Prediction Model
Rate of Infestation
Persistence (2015), influenced by unique microclimates
Bb GHA Persistence in the Field

- All 2014 and 2015 data
- A strong relationship between the number of days since Bb spray and the number of active spores in the fields. Horizontal transmission: recycling of the product
Significant Factors on Persistence

Field averages by year (2014, 2015)

Mean interval between sprays
Colony forming units/mL
Factors Affecting Persistence

Response: log(spores)

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>SE</th>
<th>t</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>1.795</td>
<td>4.237</td>
<td>0.4</td>
<td>0.6723</td>
</tr>
<tr>
<td>log(days since spray)</td>
<td>-0.770</td>
<td>0.147</td>
<td>-5.3</td>
<td>3.86E-07</td>
</tr>
<tr>
<td>Cum. Rain</td>
<td>-0.058</td>
<td>0.042</td>
<td>-1.4</td>
<td>0.1681</td>
</tr>
<tr>
<td>Mean RH</td>
<td>0.062</td>
<td>0.015</td>
<td>4.1</td>
<td>5.34E-05</td>
</tr>
<tr>
<td>Mean Temp</td>
<td>-0.009</td>
<td>0.054</td>
<td>-0.2</td>
<td>0.8662</td>
</tr>
<tr>
<td>Field</td>
<td>0.800</td>
<td>0.430</td>
<td>1.9</td>
<td>0.0647</td>
</tr>
</tbody>
</table>

* Significant effects of days since spray, RH
* This model allows us to make predictions of active *Bb* in the field given weather and time since spraying
Strip Picking: Effect on CBB Spread
Honaunau Low, 2014

*Non-destructive sampling: rates of infestation (start of increase; max level observed)
Conclusions/Observations

• Good CBB control can be achieved
• Difficult to give a precise recipe for success; each location is unique
• Location specific; seasons vary
• Only Beauveria: Not the silver bullet
• Only stripping: Not the silver bullet
• Timing versus number of applications
• Data for CBB Prediction Model
What Does The Data Tell Us?

• Knock back the existing CBB population early (strip; *Beauveria* suppression sprays)

• Increased infestation during the harvest months (strip pick sanitation)

• *Beauveria* sprays: monitor visually; spray when necessary

• “% infested” doesn’t necessarily mean you have a high % of damaged beans
Thank You Field Cooperators!

(Thanks to Nicholle, John and Glenn for excellent technical help)

Questions?